Éclairage nocturne et pollution lumineuse

Dépôt d’un document d’information dans le cadre de la consultation publique pour la révision du Plan Directeur d’Aménagement et de Développement de la Ville de Québec

Présenté par la Fédération des Astronomes amateurs du Québec

Préparé par
Chloé Legris, ing.
et
Yvan Dutil, Ph.D.
La Fédération des astronomes du Québec (FAAQ) est une corporation sans but lucratif incorporée en vertu de la partie III de la loi sur les compagnies du Québec en 1975.

La FAAQ est le seul organisme reconnu par le Gouvernement du Québec pour représenter les individus, groupes (clubs) et institutions reliés à l’astronomie amateur au Québec. La fédération compte plus de 1400 membres répartis dans la grande majorité des régions du Québec dont plus de 150 dans la région de Québec regroupés principalement dans les quatre clubs suivants :

- Club d’astronomie Cassiopée de Sillery
- Club M.A.R.S. de St-Jean-Chrysostome
- Club VÉGA de Cap-Rouge
- Club d’Astronomie Io de Val-Bélair

Auquel s’ajoute les membres de la Société Royale d’Astronomie du Canada, Centre de Québec qui ne sont pas membre de la FAAQ.

La mission de la FAAQ est de soutenir ses membres dans la pratique et la promotion de ce loisir scientifique, incluant les activités reliées au partage et à la vulgarisation de leurs connaissances avec le public à la grandeur de la province, tout en respectant la rigueur scientifique.

Une des problématiques de plus en plus importante reliée à la pratique de ce loisir scientifique est la pollution lumineuse causée par un éclairage inadéquat. La FAAQ a donc formé une section québécoise de l’International Dark-Sky Association (IDA) qui s’est donné la mission suivante :

La section québécoise de IDA a pour mission d’établir l’orientation générale axée sur la protection du ciel étoilé, de sensibiliser et de mobiliser les individus et les groupes, de soutenir les intervenants, d’évaluer et de reconnaître les actions concrètes pour minimiser la pollution lumineuse et de contribuer à la recherche de moyens financiers ou autres.

Ce document d’information est déposé dans le cadre de la mission de la FAAQ en général et plus particulièrement celle de sa section québécoise d’IDA.
Tables des matières

1. La pollution lumineuse : définition de la problématique 4
 1.1. Le voilement des étoiles ... 5
 1.2. L’éblouissement ... 7
 1.3. La lumière intrusive .. 7

2. Les conséquences de la pollution lumineuse 8
 2.1. Les pertes d’énergie .. 8
 2.2. L’environnement .. 9
 2.3. La sécurité nocturne .. 11

3. Une problématique internationale ... 12

4. Pistes de solutions .. 13

5. Références ... 14
1. La pollution lumineuse : définition de la problématique

Les éclairages mal conçus, mal orientés ou utilisés abusivement sont responsables du voilement des étoiles, créent de l’éblouissement et génèrent de la lumière intrusive. Cette utilisation inadéquate de l’éclairage nocturne se définit comme de la pollution lumineuse. Les rues, les stationnements, les parcs, les édifices publics, les commerces, les industries et les résidences privées sont souvent éclairés pendant toute la nuit. En illuminant ainsi le ciel, tous ces luminaires mettent en péril l’observation des étoiles et les recherches en astronomie, nuisent aux amoureux de la nature, portent atteinte à l’équilibre des écosystèmes et génèrent d’importantes pertes d’énergie. La pollution lumineuse connaît une croissance importante, si bien que nombre de citoyens des sociétés industrialisées n’ont jamais eu accès un ciel étoilé et pu admirer la Voie Lactée.

La lumière utile d’un luminaire

Zone B – Éclairage éblouissant et intrusif. La lumière émise à moins de 10° sous l’horizon est éblouissante et risque de générer davantage de lumière intrusive sur les propriétés voisines

Zone C – Éclairage utile

Source : FAAQ, Comité ciel noir

La lutte à la pollution lumineuse ne vise pas à éliminer l’éclairage nocturne mais plutôt à faire la promotion d’une utilisation intelligente : la notion d’éclairage prend une toute autre signification de nos jours.

Un éclairage de qualité et respectueux du ciel étoilé offre

- Une bonne visibilité
- Un environnement sécuritaire
- Une économie d’énergie et d’argent
- Une lumière douce et contrôlée qui n’est ni intrusive, ni éblouissante
- Une belle ambiance nocturne
1.1. Le voilement des étoiles

Lorsque la lumière se propage vers le ciel et rencontre les particules présentes dans l’atmosphère, elle est réfléchie vers la Terre, augmentant ainsi la brillance du fond du ciel. Plus le fond du ciel est clair, moins les étoiles sont visibles. Pour les astronomes, la noirceur du ciel est essentielle à l’étude d’objets célestes de faible intensité lumineuse.

La vue du ciel nocturne dans un site noir étonne toujours les citadins par l’impression d’immensité qui s’en dégage. Admirez un ciel noir étoilé est un élément important lorsque l’on cherche à rétablir des liens avec la Nature. La vue d’un ciel parsemé d’étoiles intéresse bien plus de gens que les astronomes professionnels ou les astronomes amateurs chevronnés. En effet, au Québec, l’astronomie est un loisir pratiqué par 7,4 % de la population âgée de 15 ans et plus. Plus encore, l’astronomie est pratiquée par 13,2 % des jeunes âgés de 12 à 18 ans durant la période estivale. Ce taux baisse toutefois à 7,8% durant l’année scolaire (Bureau de la Statistique du Québec 1995).

Le voilement des étoiles est causé par la lumière émise directement au-dessus de l’horizon et par la lumière réfléchie sur le sol.

Voici donc la situation qu’on retrouve à l’est de l’Amérique du Nord.

Carte de la pollution lumineuse dans la région de la Capitale Nationale

Échelle de Bortle de qualité du ciel

<table>
<thead>
<tr>
<th>Couleur</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noir</td>
<td>Brillance naturelle du ciel</td>
</tr>
<tr>
<td>Violet</td>
<td>La Voie lactée est visible</td>
</tr>
<tr>
<td>Bleu</td>
<td>Faibles lueurs à l’horizon au-dessus des villes éloignées</td>
</tr>
<tr>
<td>Jaune</td>
<td>Impact sur l'observation du ciel</td>
</tr>
<tr>
<td>Orange</td>
<td>Impact important sur l'observation du ciel et le travail des astronomes</td>
</tr>
<tr>
<td>Rouge</td>
<td>La Voie lactée n’est plus visible</td>
</tr>
<tr>
<td>Rouge</td>
<td>Moins de 100 étoiles visibles à l’œil nu, dôme lumineux beaucoup plus important au-dessus des villes</td>
</tr>
<tr>
<td>Rouge</td>
<td>Moins de 20 étoiles visibles à l’œil nu, le ciel est coloré jaune ou vert</td>
</tr>
</tbody>
</table>
D’après ces cartes de pollution lumineuse, on constate que la Ville de Québec émettait autant de lumière que la Ville de Paris et que le Québec est l’un des endroits les plus éclairé de la planète! Le dôme lumineux créé par l’agglomération urbaine de Québec influence la qualité du ciel étoilé dans un rayon minimum de 50 km. Dans cette zone, on retrouve quatre observatoires astronomiques majeurs : l’Observatoire de la Découverte à Val-Bélaire, la Station Castor du Centre de Recherche de la Défense à Valcartier, l’observatoire du Mont-Cosmas à Saint-Elzéar de Beaure, l’Observatoire Alphonse-Tardif à Saint-Nérée. Hormis ces observatoires, cette situation rend difficilement accessible le ciel étoilé pour la population en général.

Sachant qu’il est possible d’admirer la Voie lactée en plein cœur du centre-ville des villes de Tucson en Arizona ou de Venise en Italie, il y a tout lieu de revoir la façon dont nous consommons l’énergie lumineuse!

1.2. L’éblouissement

L’éblouissement peut créer de l’aveuglement et ainsi limiter notre capacité à distinguer les obstacles rencontrés ou il peut simplement créer un inconfort visuel. Dans les deux cas, la responsabilité incombe à une mauvaise utilisation de l’éclairage et accentue les risques d’accidents.

L’éblouissement est causé par un ensemble de facteurs tels :

- la lumière émise à moins de 10° sous l’horizon;
- un niveau d’éclairement trop élevé;
- une puissance trop élevée de la source lumineuse;
- une installation inadéquate du dispositif d’éclairage.

La sensibilité à l’éblouissement s’accroissant rapidement avec l’âge (Lachenmayr et al 1998 ; Wood, 2002 ; Babizhayev 2003), la réduction de source d’éblouissement deviendra un élément essentiel de la qualité de vie de résident plus âgés de la ville.

1.3. La lumière intrusive

La lumière intrusive, quant à elle, est cette lumière qui entre dans nos maisons, celle qui éclaire au-delà de ce qui est nécessaire, en dehors des limites de propriété.
La lumière intrusive nous prive de notre quiétude tant à l’intérieur de nos maisons que sur nos terrains et jardins, en plus de limiter notre accès à la beauté d’un ciel étoilé! Aucun prétexte valable ne justifie d’éclairer la propriété voisine; c’est une utilisation abusive de lumière, donc d’énergie.

De plus, de récentes études démontrent la grande importance pour la santé humaine d’avoir accès à une nuit de sommeil dans la plus grande noirceur possible. Plusieurs hormones et cellules du système immunitaire fonctionnent uniquement en pleine noirceur; c’est le cas notamment des cellules luttant contre certains cancers!

2. Les conséquences de la pollution lumineuse

2.1. Les pertes d’énergie

À partir des images satellites de pollution lumineuse, il a été possible d’estimer la quantité d’énergie servant à éclairer le ciel. Aux États-Unis, on estime que l’énergie lumineuse émise vers le ciel équivaut à 1 milliard de dollars annuel, alors qu’au Québec c’est 45 millions de dollars qui s’envolent littéralement vers nos étoiles! Cet études démontrent que le Québec est un des endroits les plus éclairé au monde ; chaque québécois émet en moyenne 2 à 3 fois plus de lumière qu’un américain ou un européen.

Les paragraphes suivants, décrivent brièvement différentes conséquences énergétiques liées à l’utilisation de l’éclairage nocturne.

2.1.1. Efficacité des lampes

D’une manière générale, le lampes blanches (mercure, halogène, halogénures métalliques, fluorescent) sont généralement moins efficaces énergétiquement que les lampes jaunes (sodium haute pression, sodium basse pression). Toutefois, en plus d’être moins efficaces, les lampes blanches ont une incidence beaucoup plus grande sur la noirceur du ciel que les jaunes.

Le cas le plus évident à traiter est l’utilisation encore fort répandue de lumières au mercure. Au Québec, il s’est vendu cette année seulement 3700 luminaires de types « sentinels » dont 2200 sont des 400 watts au mercure. Une lampe 400 watts au mercure peut être remplacée par une lampe au sodium haute pression 150 watts et générer la même quantité de lumière. Nous n’avons pas de données concernant la quantité de sentinels au mercure, mais elles sont généralement fortement répandues dans les secteurs industriel et commercial.

2.1.2. L’efficacité des luminaires

La lampe émet une certaine quantité de lumière, mais une fois installée dans le luminaire, une grande partie de cette lumière est perdue à travers ce dernier. La conception du luminaire est
donc un élément tout aussi important à considérer puisque cela permet d’optimiser la lumière générée par la lampe.

C’est le cas des luminaires qui envoient une grande proportion de la lumière directement vers le ciel ou en dehors des surfaces concernées. Certains luminaires décoratifs n’ont une efficacité que de 30%, alors que les nouvelles technologies peuvent atteindre une efficacité d’environ 60%.

2.1.3. Les niveaux d’éclairement et les heures d’opération

Actuellement, il y a une surenchère des niveaux d’éclairement dans plusieurs secteurs, aussi bien pour l’éclairage routier, qu’industriel ou commercial. La majorité des stationnements, des aires commerciales et des routes utilisent des niveaux d’éclairement qui sont en moyenne de 2 à 5 fois plus élevés que les normes actuellement recommandées. Pour des raisons marchandes, les commerces fixent eux-mêmes leurs propres normes et, croyant améliorer la sécurité ou par simple méconnaissance, les électriciens et ingénieurs éclairent plus que nécessaire. De plus, la majorité de ces installations d’éclairage demeurent ouvertes toute la nuit alors que cela n’est utile à personne.

2.2. L’environnement

« La vie a besoin de nuit »

2.2.1. La pollution lumineuse et les gaz à effet de serre

Au même titre que tout autre dépense d’énergie, l’utilisation abusive d’éclairage se traduit également en une consommation accrue de CO2 et contribuent de cette façon à accélérer le dérèglement climatique causé par les gaz à effet de serre.

La lutte contre la pollution lumineuse s’inscrit donc dans une volonté de développement durable et constitue un moyen par lequel le gouvernement canadien pourra réduire l’émission des gaz à effet de serre, tel que ratifié dans le Protocole de Kyoto.

2.2.2. La pollution lumineuse et l’être humain

Les études menées à ce jour sur les effets de l’éclairage artificiel sur l’homme, démontrent que l’éclairage artificiel peut affecter les rythmes biologiques de l’humain en dérégulant les horloges internes ou certains processus hormonaux.

Une étude menée par l’University of Connecticut Health Center et publiée dans le National Library of Medicine affirme que le dérèglement de l’horloge interne causé par la lumière nocturne s’avère un facteur aggravant des risques de cancer du sein dans les sociétés industrialisées.
Également, on soupçonne que toute cette lumière artificielle contribue à affaiblir la capacité d’adaptation de l’œil humain à la noirceur en plus d’être une cause des troubles du sommeil associés aux grandes villes. Une étude menée en 2003 en république Tchèque a montrée que 12% de la population voyait son sommeil perturbé par les intrusions de lumière (Forejt et al. 2004)

2.2.3. La pollution lumineuse et la faune et la flore

Biologistes et environnementalistes s’entendent pour affirmer que l’éclairage artificiel a des conséquences notables auprès de plusieurs espèces animales et végétales. Les animaux nocturnes ont besoin de noirceur et les animaux diurnes de clarté pour se nourrir et s’accoupler.

Que se passe-t-il quand la nuit n’est plus noire? Il y a confusion. On a observé, entre autre :

- que la migration de certains oiseaux est affectée puisqu’ils se guident à l’aide des étoiles, ou encore, qu’ils viennent s’écramer contre les gratte-ciel illuminés des centres-ville. À Toronto seulement, il y a 24 000 volatiles qui meurent de cette façon à chaque année (Ogden 1996).

- qu’en s’approchant trop des zones artificiellement éclairées les insectes et les papillons de nuit sont piégés, causant leur perte et fragilisant ainsi la chaîne alimentaire.

- que certaines espèces peuvent désertler complètement une région puisqu’elles fuient les zones artificiellement éclairées la nuit.
2.3. La sécurité nocturne

Exemple d’un éclairage de sécurité approprié :

- Bon contrôle du flux lumineux (éclaire vers le sol)
- Niveau d’éclairage suffisant
- Pas d’éblouissement

Source : International Dark Sky Association

Deux mythes subsistent liés à la puissance de l’éclairage utilisé, à savoir que, « plus on éclaire, mieux on voit et moins il y a de vols ou de vandalisme ».

Cependant, il est faux de croire qu’en augmentant la quantité de lumière on obtient une meilleure visibilité ou un environnement plus sécuritaire.

Les éclairages mal conçus, mal dirigés ou utilisés à des intensités trop élevées peuvent créer de l’éblouissement et de la confusion chez les conducteurs, les piétons et les cyclistes. Ceci s’explique par le fait que l’œil humain a besoin d’un certain temps pour s’adapter à l’éclairage environnant. Ainsi, lorsqu’un individu quitte ou arrive sur un lieu où l’éclairage est trop élevé, il est aveuglé pendant un certain temps, limitant sa capacité de réaction et augmentant ainsi la probabilité de provoquer un accident ou d’en être victime. En fait, il n’existe aucune corrélation entre l’intensité de l’éclairage et la diminution d’accidents routiers. Un éclairage minimum s’avère tout aussi sécuritaire, et parfois même plus qu’un éclairage trop élevé. Une route plus éclairée se traduit généralement par un accroissement de la vitesse des automobilistes.

Il existe un « Dark Campus Program » aux Etats-Unis, où l’absence de tout éclairage a réduit le vandalisme dans ces institutions.
3. Une problématique internationale

« Le ciel étoilé fait partie intégrante du patrimoine mondial à préserver »

UNESCO, 1992

Image satellite de la pollution lumineuse à travers le monde

La pollution lumineuse est un sujet d’actualité dans plusieurs pays et des actions concrètes le prouvent quotidiennement. Voici un très bref aperçu d’actions posées, démontrant clairement la volonté internationale à conscientiser la population et les gouvernements face à cette problématique.

- En 1972, Tucson, en Arizona devient la première ville (600 000 habitants) à adopter une réglementation de l’éclairage extérieur. En plein cœur de la ville, la Voie lactée est accessible à tous !

- En 1988, l’International Dark Sky Association (IDA) est créée. Elle compte aujourd’hui 10 000 membres et 450 organismes répartis dans 70 pays.

- En 2000, le premier Atlas mondial des cartes de pollution lumineuse voit le jour. On y révèle, entre autre, qu’environ 97% de la population nord-américaine et européenne vit sous un « ciel lumineusement pollué ».

- En mars 2003, plusieurs pays européens envoient un appel au Conseil Européen de voter un ordre du jour pour que le ciel soit déclaré et considéré comme un bien et un patrimoine environnemental qui doit être protégé par des normes législatives spécifiques.

- En 2004, la ville de Sherbrooke met en place une politique de lutte à la pollution lumineuse. Montréal s’apprête à lui emboîter le pas.
4. Pistes de solutions

Dans le cadre de la révision du Plan d’aménagement et de développement de la ville de Québec, il serait tout à fait pertinent d’intégrer un volet sur le contrôle de l’éclairage nocturne en portant un regard global sur la situation actuelle de Québec dans le but de planifier des stratégies d’intervention et de prévention. Cela permettrait du même coup une action concertée avec la Communauté Métropolitaine de Québec qui a identifiée la pollution lumineuse comme un problème environnemental à Québec (CMQ 2004).

Quelques pistes de solutions devraient être envisagées afin de permettre à tous les citoyens de bénéficier d’un éclairage sécuritaire tout en créant une belle ambiance nocturne. Les initiatives de mise en valeur du patrimoine bâti et paysager sont intéressantes en autant qu’elles soient faites en regard de l’éclairage environnant et dans le respect de la nuit. Pour apprécier la beauté de la nuit, il faut éviter de créer une deuxième journée !

En respectant certains principes de base, il y a tout à gagner à repenser la façon dont la Ville de Québec s’éclaire. De toute évidence, pour tous les secteurs concernés par l’éclairage nocturne (commercial, industriel, institutionnel et routier), il serait préférable :

- d’utiliser des niveaux d’éclairement modérés ;
- d’utiliser des luminaires efficaces minimisant les pertes de lumière vers le ciel ;
- de privilégier des sources lumineuses au sodium haute pression ;
- de privilégier des installations minimisant les débordements de lumière hors des surfaces concernées ;
- de favoriser l’implantation de couvre-feu (principalement les aires commerciales, stationnements et les industries) et favoriser plutôt le recours à un éclairage de sécurité suffisant.
- d’aménager certains sites urbains de façon à favoriser l’observation du ciel.

Il est possible d’agir via l’implantation d’une réglementation sur l’éclairage nocturne, mais il est également important de pouvoir planifier des actions sur le terrain afin d’harmoniser les nouvelles orientations que la Ville pourrait souhaiter se donner. Il est certain que la sensibilité des citoyens et des gouvernements s’améliore face à cette surconsommation de lumière, mais il serait souhaitable ce que la Ville devienne proactive et agisse sur son propre territoire en ce sens. De même, il serait advantageux que la ville s’aligne sur les pratiques misent en place ailleurs au Québec (ex : Sherbrooke) afin d’uniformiser la réglementation, ce qui en facilitera sont application par tous les intervenants dans le domaine de l’éclairage.
5. Références

Communauté Métropolitaine de Québec, Projet d’énoncé de vision stratégique du développement, 27 mai 2004

Lachenmayr B, Berger J, Buser A, Keller O., Reduced visual capacity increases the risk of accidents in street traffic, Ophthalmologe. 1998 Jan, 95(1):44-50

Marchant, P. R., A demonstration that the Claim Than BRigther Lighting Reduce Crime is Unfounded, British Journal of Criminology 2004, 44, 441-447

National Institute of Justice, 1997, Preventing crime : what works, what doesn’t, what’s promising, rapport préparé par Lawrence W. Sherman, Denise Gottfredson, Doris MacKenzie, John Eck, Peter Reuter et Shaven Bushway, Departement of Criminology and Criminal Justice, University of Maryland

Ogden, L. J. E., Collision Course : The Hazard of Lighted Structures and Windows to Migrating Birds, 1996, publié par le World Wildlife Fund Canada et le Fatal Light Awareness Program